NGSS consists of three dimensions that are woven together. The first dimension is Science and Engineering Practices (SEPs). There are eight practices, including “asking questions and defining problems” and “developing and using models,” which are intended to give students experiences engaging in the same work as scientists and engineers.
The second dimension is Cross Cutting Concepts (CCCs). These are major themes that are seen in all of the science domains. Students learn to identify and describe the seven CCCs, including “patterns” and “cause and effect” as they study various topics throughout their science education and develop an understanding of the integrated nature of science.
The third dimension in NGSS is the domain-specific content taught, Disciplinary Core Ideas (DCIs). Between two and four core ideas are identified for each domain—physical science , life science, earth and space science, and engineering, technology and application of science. Each core idea has sub-ideas that are introduced and elaborated on in a spiral method through the grade levels.
At each grade level (and by subject area for high school), there are specific performance expectations which make up the standards. Rather than a list of what students should know, these performance expectations focus on what students can do based on their experience with all three NGSS dimensions and include language from all three dimensions woven together. In order for instruction and learning to be three-dimensional, authentic phenomena and problems are used as the basis of lessons. Students are asked to bring together the knowledge and skills they are developing to explain a phenomenon or develop a solution to a problem.
NGSS vs. traditional science education
In addition to providing a new vision for how students will learn science, NGSS involves three significant deviations from traditional science education. First, NGSS includes earth and space science as its own scientific domain. This is the result of the initial work done by the framework committee. A strong message they heard from science experts was that by the time students leave 12th grade they must know about human impact on the environment. As a result earth science was required as a separate domain which hasn’t been the case on a national level for more than 100 years. Understanding the complexity of ecosystems, learning and communicating about human impact, and developing creative solutions to climate issues all appear in the standards at multiple grade levels. This is especially striking given recent findings that many teachers say teaching about climate change is important but report that they don’t teach it and that educating students about our role in climate change and how we can reduce our impact is the most effective tool in changing parents’ mindsets.
The second major change NGSS brings is the inclusion of engineering standards. NGSS calls for engineering design and scientific inquiry to be taught simultaneously. Traditionally, engineering has been relegated to “applied sciences,” but NGSS calls for it to be taught as an equally important component of science education. Engineering is defined as developing solutions to real world problems, and the authors of NGSS state, “providing students a foundation in engineering design allows them to better engage in and aspire to solve the major societal and environmental challenges they will face in the decades ahead.” (Appendix I)
The third significant change in NGSS is its focus on equity. A major tenant of implementation is “all standards, all students.” (Appendix D) There have been persistent achievement gaps in science among various subgroups including socioeconomically disadvantaged students, girls, English learners, students with disabilities, and others. Many of these subgroups have traditionally been pulled out of class during science instruction to receive extra math and ELA support, been placed in remedial science classes, or been denied access to higher level science classes for a variety of reasons. NGSS calls for all students to have access to quality science instruction that includes all standards. This is challenging and has been the source of much anxiety and a professional development focus as states implement NGSS. It is also perhaps the most hopeful component of NGSS. As Jemison pointed out, “kids live up, or down, to expectations.” If we start with the expectation that all students should have access to a complete science education, that all children can be curious and explore and invent, and that everyone in our schools could be scientifically literate and use these skills to change their own lives and our world, then there’s no telling where we might go.